

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

USING OPEN SOURCE SOFTWARE IN VISUAL
SIMULATION DEVELOPMENT

by

Ricardo Brigatto Salvatore

September 2005

 Thesis Advisor: Dr. Rudolph Darken
 Second Reader: CDR Joseph Sullivan, USN

Approved for public release; distribution is unlimited.

This thesis done in cooperation with the MOVES Institute

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Using Open Source Software in Visual
Simulation Development
6. AUTHOR(S) Ricardo Brigatto Salvatore

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The convergence between personal computer-based games and virtual environments technologies

dramatically reduced development costs and potentially increased the use of the technology in training
activities. Using open source/free software tools in the process can expand these possibilities, resulting in
even greater cost reduction and allowing the flexibility needed in a training environment.

This thesis presents a configuration and architecture to be used when developing training visual
simulations using both personal computers and open source tools.

Aspects of the requirements needed in a visual simulation development, processes to develop an
application and issues related to the use, licensing and selection of open source/free software are analyzed
to identify their limitations and possibilities.

This architecture was tested by developing a small visual simulation. The tools and engine used are
presented to enable any future project applying open source software to follow similar procedures.

15. NUMBER OF
PAGES

103

14. SUBJECT TERMS: Visual Simulation, Open Source Software, Game Development, Virtual
Environment Training

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

USING OPEN SOURCE SOFTWARE IN VISUAL SIMULATION
DEVELOPMENT

Ricardo B. Salvatore

Lieutenant Commander, Brazilian Navy
 B.S., Brazilian Naval Academy, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2005

Author: Ricardo Brigatto Salvatore

Approved by: Dr. Rudolph Darken
Thesis Advisor

CDR Joseph Sullivan, USN
Second Reader

Dr. Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The convergence between personal computer-based games and virtual

environments technologies dramatically reduced development costs and

potentially increased the use of the technology in training activities. Using open

source/free software tools in the process can expand these possibilities, resulting

in even greater cost reduction and allowing the flexibility needed in a training

environment.

This thesis presents a configuration and architecture to be used when

developing training visual simulations using both personal computers and open

source tools.

Aspects of the requirements needed in a visual simulation development

processes to develop an application and issues related to the use, licensing and

selection of open source/free software are analyzed to identify their limitations

and possibilities.

This architecture was tested by developing a small visual simulation. The

tools and engine used are presented to enable any future project applying open

source software to follow similar procedures.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. PROBLEM STATEMENT... 1
B. MOTIVATION... 2
C. APPROACH... 2
D. THESIS ORGANIZATION.. 2

II. VISUAL SIMULATION TECHNOLOGY.. 5
A. PERSONAL COMPUTERS BASED VISUAL SIMULATIONS 5

1. Introduction.. 5
2. Visual Simulation Definitions ... 5
3. Immersion, Interaction and Presence 6
4. Human Factors Software and Hardware................................ 7
5. Vision and Displays... 8
6. 3D Image Rendering Software .. 9
7. Hearing and Audio... 10
8. Audio and Video Relation ... 11
9. 3D Audio Generation Software ... 11

B. VISUAL SIMULATION TRAINING AND GAMES............................. 12
1. Introduction.. 12
2. Motivation and Involvement.. 13
3. Training and Development Costs... 14
4. Uses and Limitations... 16

C. VISUAL SIMULATION DEVELOPMENT... 17
1. Introduction.. 17
2. Development Process ... 17
3. Authoring Tools and Engines... 22
4. Development Problems... 23

III. OSS/FS SOFTWARE FOR VISUAL SIMULATION DEVELOPMENT 27
A. OPEN SOURCE SOFTWARE ... 27

1. Introduction.. 27
2. Open Source Licensing... 28

a. MIT / X License .. 29
b. BSD License .. 29
c. Apache License... 30
d. GNU General Public License (GPL) 30
e. GNU Lesser General Public License (LGPL) 30
f. Mozilla Public License (MPL) 31
g. Q Public License (QPL) .. 31
h. Artistic License (Perl) ... 31

3. Problems of OSS/FS.. 32
4. Open Source Advantages ... 34
5. Hardware and Open Source Drivers Issues 34

 viii

B. SELECTING AND EVALUATING OPEN SOURCE SOFTWARE 35
1. Introduction.. 35
2. Identification of Candidates.. 35
3. Reviews .. 35
4. Comparison.. 36
5. Analysis.. 39

C. OPEN SOURCE TOOLS AND ENGINES FOR VISUAL
SIMULATION DEVELOPMENT... 40
1. Introduction.. 40
2. OpenGL .. 42
3. OpenAL... 43
4. Delta3D Visual Simulation Engine.. 43

a. OpenSceneGraph.. 45
b. Open Dynamics Engine (ODE)................................... 45
c. Delta3D Viewer .. 45
d. Delta3D Particle Editor ... 46
e. STAGE (Simulation, Training and Game Editor) 47
f. Other Libraries and Dependencies............................ 47

5. GIMP ... 48
6. Blender ... 49
7. Audacity ... 49

IV. ANALYSIS, CONCLUSIONS AND FUTURE WORK 51
A. ANALYSIS ... 51
B. CONCLUSIONS... 52
C. FUTURE WORK... 53

APPENDIX A. INSTALLING AND SETTING LINUX AND DELTA 3D 55

APPENDIX B. APPLICATION DEVELOPED USING OSS/FS TOOLS.................. 75

LIST OF REFERENCES.. 81

INITIAL DISTRIBUTION LIST ... 85

 ix

LIST OF FIGURES

Figure 1. FOV (From Ref. 7).. 9
Figure 2. Animation Production Pipeline (From Ref. 22). 19
Figure 3. Game Development Hierarchy (From Ref. 17). 20
Figure 4. Simplified Development Process Proposed.. 21
Figure 5. Evaluation and Selection Process. ... 40
Figure 6. Delta 3D Dependencies Architecture.. 44
Figure 7. Delta 3D Viewer.. 46
Figure 8. Delta 3D Particle Editor. ... 47
Figure 9. Architecture Proposed. ... 51
Figure 10. Fedora Core 3 Installation Type. .. 56
Figure 11. Delta3D Package Downloaded... 58
Figure 12. Extract Delta3D Package. .. 59
Figure 13. Delta3D File Tree Structure.. 60
Figure 14. Show Hidden Files.. 61
Figure 15. Old .bashrc File. ... 62
Figure 16. New .bashrc File... 63
Figure 17. Extract Delta3D Lib Files. ... 65
Figure 18. TestCharacter Screenshot.. 67
Figure 19. TestEffects Screenshot. ... 67
Figure 20. Viewer Screenshot. .. 68
Figure 21. Desktop Icons Screenshot.. 68
Figure 22. Create New File Desktop.. 69
Figure 23. HelloWorld Screenshot... 72
Figure 24. Application Class Hierarchy.. 77
Figure 25. The DDG Model.. 78
Figure 26. DDG Turn and the Submarine in the Surface..................................... 78
Figure 27. Underwater Camera with a Frigate View. ... 79

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. America’s Army Costs (From Ref. 17) .. 15
Table 2. General Software Licensing Costs ... 23
Table 3. Open Source Licenses ... 32
Table 4. Proprietary and Open Source Tools ... 42
Table 5. Delta3D Dependencies Libraries List ... 48

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABREVIATIONS

PC Personal Computer
OSS/FS Open Source/Free Software
3D Three Dimensions
2D Two Dimensions
API Application Program Interface
GPU Graphical Processor Units
COTS Commercial Off the Shelf
DMSO Defense Modeling and Simulation Office
VE Virtual Environment
VS Visual Simulation
HMD Head Mount Display
OS Operational System
OpenGL Open Graphics Language
dB Decibels
FOV Field of View
DARPA Defense Advanced Research Projects Agency
AA America’s Army Gamy Project
IDE Integrated Development Environment
DOD Department of Defense
MIT Massachusetts Institute of Technology
FSF Free Software Foundation
OSI Open Source Initiative
GUI Graphical User Interface
URL Uniform Resource Locator
TCO Total Cost of Ownership
SGI Silicon Graphics

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank my wife Silvia for her patience and courage in facing

the challenge of living abroad with our two small kids. Thank you to my daughter

and son for, while not understanding the reason why I was so busy, letting me

have enough late working hours to finish this thesis.

Thanks to the Brazilian Navy for the opportunity to attend the Naval

Postgraduate School and gain so much advanced knowledge.

Thanks to my advisor and the director of the MOVES Institute, Dr.

Rudolph Darken, and to CDR Joseph Sullivan for their cooperation during the

research process.

I would like to thank the International Office staff for the support they

provided during my time in Monterey and in all other administrative issues.

I would like also to express a special thank you to the Delta3D project

team, led by Erik Johnson, for their patience with my often naïve questions.

Special thanks to Chris Osborne, who helped me when setting-up the Linux

environment and shared his vast knowledge with me.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PROBLEM STATEMENT
During a visual simulation developing process, several support software

tools are used. These include authoring tools for images, textures and three-

dimension (3D) models, and engines, libraries and application program interfaces

(API) to drive the video and audio rendering, and so on. These tools are normally

high-cost proprietary software that has a tendency to lock the development from

the very beginning, restricting the entire project from the start. These limitations

dramatically increase the overall project dependency on specific vendors, and

render development costs almost prohibitive for a training application. To use

visual simulation technology for training, especially for massive military training,

alternatives that allow freedom in development and customization at reasonable

costs must be identified.

One possible way to achieve this freedom and to control costs is to use

open source or free software (OSS/FS) tools and API in strategic parts of the

development process. The successful introduction of OSS/FS in the development

process could bring about an increase in the use of visual simulation technology

in new areas where budget limitations are problematic. Questions addressed in

this work are:

1. What are the possibilities and limitations of using game-like visual

simulations in training?

2. What are the tools used during a visual simulation development?

3. How to select OSS/FS tools, libraries and engines?

4. Can these tools be used to develop visual simulations for training?

5. What is the process used when developing a visual simulation?

6. What are the advantages and disadvantages when using OSS/FS

tools in visual simulations development?

2

B. MOTIVATION
The use of game-like visual simulations in several kinds of training is

increasing daily as a generation of gamers joins the work market. Some of the

known limitations inhibiting the use of visual simulations are vendor lock-in, lack

of customization freedom and high development costs.

The main objective of this work is to explore possible technologies that

exist in the OSS/FS world to allow a reduction in these limitations when

developing visual simulations.

Another objective is to identify a process and OSS/FS alternatives for

popular proprietary tools, with the goal of implementing a low-cost fast

development process.

C. APPROACH
The first part of this thesis presents an overview of visual simulation

technology, including human factors and the development cycle, focusing on

personal computers (PC) hardware, and training applications.

The second part analyzes open source software in general, looking at

licenses, OSS/FS evaluation and selection, existing tools and engines for visual

and audio simulation rendering.

To illustrate the problems and difficulties encountered when using

OSS/FS, an installation and setting tutorial for an open source visual simulation

and game engine is described in Appendix A and, as a development test for the

framework and tools proposed, a small visual simulation application development

is described in Appendix B.

D. THESIS ORGANIZATION
This thesis is organized in the following chapters:

I. Introduction

II. Visual Simulation Technology

III. Open Source Software and Visual Simulation Development

IV. Analysis, Conclusions and Future Work

3

Appendix A: Installing and Setting Linux Fedora Core 3 and Delta 3D

Appendix B: A Visual Simulation Application Developed Using OSS/FS

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. VISUAL SIMULATION TECHNOLOGY

A. PERSONAL COMPUTERS BASED VISUAL SIMULATIONS
1. Introduction
As outlined in Gordon E. Moore’s 1965 Moore’s Law1, the CPU microchip

evolution has reached now the Graphical Processors Units (GPU), making a

commercial off the shelf (COTS) computer more powerful than the old

specialized workstations used to run virtual environments and traditional

simulators. Visual Simulation applications normally confined to those

environments migrated to regular PCs and, today, a commercial computer game

has almost the same visual impact as a real simulator.

 In this chapter, we focus on the use of a PC to host a 3D Visual

Simulation, evaluating human factors and some hardware and software issues.

The emphasis is on open source software and regular commercial-off-the-shelf

(COTS) hardware. OSS/FS is detailed in Chapter III.

2. Visual Simulation Definitions
Because confusion exists when referring to names and definitions, some

clarification is provided below. Names such as Visual Simulation, Virtual

Environment, Virtual Reality, Artificial Reality, Synthetic Environment, Virtual

Worlds, etc., can all refer to the same thing. Some formal definitions are:

• For the Defense Modeling and Simulation Office (DMSO), a Virtual

Environment (VE) is an environment that does not exist in the real world, and

uses a computer-generated three-dimensional environment to create the

immersion effect2.

• According to J. K. Caird, Visual Simulation is a 3-D graphic image

that is generated by computers to create a cognitive and physical interaction3.

• Furness and Barfield say that a Virtual Environment is a

representation of a computer model or database that can be interactively

experienced and manipulated by participants4.

6

There are a few common points in these definitions, namely, that

computer generated images must exist and these images must allow interaction

in a way that results in a kind of immersion.

3. Immersion, Interaction and Presence
 Interaction can be considered the cognitive and physical real time

participation of the user in the environment. It is the effects that the user causes

in the environment and the reaction that he notices from the environment. It is an

act-reaction relationship. According to the Merriam-Webster Dictionary is mutual,

or reciprocal, influence.

For Slater, immersion is the sense of “being there.” It is the extension in

which the virtual reality becomes dominant over the real world. It is when users,

after experiencing the virtual environment, remember the experience as having

visited a “place” rather than just having seen a database of images generated by

a computer5.

But the ability to measure the sense of presence is low; the most

commonly accepted theory is that as this sense increases, the user starts to

experience the immersion effect. A VE must give the user the sensation that

what he is virtually experiencing is almost real. Empirically, from the gamer’s

experience, the idea that a PC can create a VE sufficiently immersive can be

inferred. It is when the player plays a computer game for hours, completely

forgetting the exterior world.

Definitions of visual simulations or virtual environments and the idea of

immersion lead to three types of VE, each distinguished by the level of

immersion achieved:

• Fully immersive, when the VE encompass the world in 360

degrees.

• Augmentations (Overlay) to the real world, when a transparent, or

semi-transparent screen is used to project images on top of real world image, or

the real world itself.

7

• Less-immersive, when we have “Through the Window” worlds, the

viewer is positioned outside the VE.

Using a modern COTS PC, some kind of immersion can be achieved if

certain hardware and software points are adjusted. First, the tasks desired to be

performed in the VE must be analyzed. The expected result from the VE activity

must also be analyzed.

Virtual Environments are widespread and used in several areas, such as

entertainment, design and development, training, education, scientific

visualization, collaboration, medicine and marketing. Each area has different

requirements, and for many of them, if not all, the main motivation to use PC

Virtual Environments is cost reduction.

Of course there will be a trade-off between cost reduction and immersion,

especially on the hardware side. A rigorous task analysis can define what is

expected, and determine what can be achieved. A PC solution probably will not

achieve 100% of the tasks, but it could be a more realistic solution depending on

the budget involved. Thinking in a solution that follows the 80/20 Pareto principle,

80% of the budget can be concentrated on the 20% most important

characteristics to get immersion.

For example, for a fully immersive VE, expensive hardware like Head

Mount Displays (HMD) and special input devices (gloves) are needed. The

software licenses and development to manage these devices are costly and the

increase in the immersion effect could not be significant enough to justify the

cost.

4. Human Factors Software and Hardware
The interaction between a human and the environment, real or virtual,

occurs through the senses. It is therefore important to understand a little about

how the human sensation system works in order to analyze how a Virtual World

stimulates these senses.

A VE is supposed to generate multimodal stimulation in human senses.

According to Heilig, the estimated attention humans get from the environment

8

using which sense is6: vision (~70%), hearing (~20%), smell (~5%), touch (~4%)

and taste (~1%). But these percentages depend on the age of the sample

(population), profession, cultural differences and other factors. The important

point is that vision and hearing are the predominant senses.

The actual PC hardware and software can simulate both sound and vision,

with more or less realism, depending basically on the use of specialized

input/output devices which reflects direct in hardware costs.

5. Vision and Displays
Two aspects related to human vision and displays are important: the

frame rate and the field of view. The regular frame rate, or refresh rate of the

displays used in a PC, must be above the human eyes’ flicker fusion point, which

is around 50-60 Hz. With modern monitors, achieving this rate is not a problem.

The Field of View (FOV) is more limited by the PC hardware because of

the size of the monitors. FOV is the visual angle subtended at the viewer’s eye.

The natural FOV in humans are 120o vertical and 180o horizontal. Eye Station

Point (ESP) is the physical location of the viewer’s eye, the point where the

viewer is located in relation to the display or monitor. Eye Station Point

Geometric (ESPg) is the point in space that corresponds to the visual angle of

the model as projected out of the display; it is the represented model center of

projection determined by the virtual lens programmed in the software used to

render the model image, and not by the monitor itself. Field of View Geometric

(FOVg) is the visual angle of the model, not the display, subtended at the

computer’s virtual eye7.

Figure 1. FOV (From Ref. 7).

Findings from the Psotka, Lewis and King study 7 suggest that when

centered in the user, a 60 degree FOVg is optimum and robust across a range of

tasks in perspective displays adopting regular viewing locations (from 350 mm to

900 mm) from the display.

A 17 inch regular PC monitor and a user within the standard viewer

location (55 cm) can reach an FOV of 80o horizontal and 45o vertical. This is very

reasonable and allows for a 60o model FOVg. A certain level of immersion can

be obtained depending on the external influences. Better results can be achieved

if the size of the monitor is increased or more than one monitor is used.

Using Head Mount Displays, a much more immersive VE can be created,

but, in this case, the costs are high and they are not yet considered regular

hardware.

6. 3D Image Rendering Software
On the software side, rendering 3D images in a regular PC display is not

difficult anymore. Every video game renders 3D images using one kind of

technology or another. What is needed is a good graphics card adapter that

supports one of the main technologies: DirectX or OpenGL.

9

10

These are the two dominant technologies and both are incorporated in

mainstream video card hardware. Microsoft DirectX, runs only on Microsoft

Windows operational system (OS) and Open Graphics Language (OpenGL), is

an open standard created by SGI that runs on several OSs.

Choosing the open source solution for a low-level 3D graphics API led us

to several other open source options for higher-level 3D graphics, which are

discussed in Chapter III.

7. Hearing and Audio
Sound is the other important feature for increasing the immersion effect;

previous studies show that 3D spatial sound helps localization and memory

retention in a virtual space.

The sounds humans can hear are described in terms of sound intensity

and frequency. Humans can hear sounds in frequencies between 20 and 22,000

Hz. The intensity of sounds encountered in an everyday experience are in the

range of 80 to 90 decibels (dB). The pain limit is around 120 dB. Normally,

sound systems use 16 bits to represent the acoustic signal that provides a

dynamic range of 90 dB, which is commonly considered sufficient for most

simulations 8.

As previously mentioned, audio stimulus covers a substantial percentage

of the human senses. Technologies like surround sound, digital surround sound,

stereo sound, and so on, are available for use in regular PCs. They can create a

very reasonable immersive auditory experience by virtually distributing the sound

sources in the space.

On the hardware side, developers must choose between using

headphones or speakers. It is easier to suppress the real world sound and create

spatialized sound using headphones. Using this option, full control of the amount

of sound received by each ear can be achieved. Speakers can create spatial

sound in an entire room, but the room itself has to be acoustically prepared and

must be able to deal with the cross-influence between the two ears and shadow

areas, which makes the task more difficult and costly.

11

To create a spatial sound effect, it is necessary to “virtualize” the sound

source(s), i.e., create virtual sound sources around the space. This is

accomplished via two factors: controlling the direction from which sound is

coming by physically positioning speakers and reflectors, and managing the

perceived distance by introducing delays and managing intensity, which is done

using software.

8. Audio and Video Relation
One issue that cannot be overlooked is the synchronicity between sound

and video: unsynchronized sounds and images can generate an uncomfortable

sensation that reduces the immersion effect and can produce simulator sickness.

In their study, “Computational Requirements and Synchronization Issues

for Virtual Acoustic Displays,” Miner and Claudell9 showed that humans can

easily perceive mismatches in audio/visual cues. They found that it is necessary

to keep the delays between audio and video as low as 100 ms to reduce this

effect. The sound system used has to generate at least delayed directional sound

waves allowing the creation of 3D sound cues.

The use of open field techniques (loudspeakers) is more appropriate for

applications where the 3D space localization is not as important and ambient

sound is enough. They are typically less expensive, as it is easy to find COTS

sets of speakers in several configurations. The closed field technique

(headphones) is better when a deployable solution is needed.

Regular PC sound cards can deliver several kinds of 3D sound solutions,

and the techniques depend on the manufacturer. The two most widely used are

A3D and EAX. Both are supported for almost all 3D sound card hardware. The

high level sound API normally supports both of them.

9. 3D Audio Generation Software
The sound engines API offers are much more limited than the image

rendering engines API, but there are still several solutions available. For

example, in Windows there is Direct Sound, and in the open source world there

is OpenAL.

12

Direct Sound and Direct Sound 3D are the two most common low-level

sound APIs. They are attached to Microsoft Direct X technology, which is the

reason they are almost a standard for 3D sound generation in the windows world.

OpenAL is an open source and cross-platform API that is becoming well

supported by the majority of hardware vendors, can run in open source OS and

is compatible with A3D and EAX sound cards. It is a natural choice for the open

source world. OpenAL is discussed later in Chapter III.

Having analyzed the human factors of PC-based simulations, the next

chapter discusses the training use of this technology.

B. VISUAL SIMULATION TRAINING AND GAMES
1. Introduction
One of the first uses of PC visual simulations was for entertainment in

applications such as flight simulators and first person shooter games. Because of

their success and improvement, these applications came under consideration as

possible training solutions.

The use of entertainment devices for training is not new. In World War II

the need for a fast-training cycle brought the flight simulator technology, an

entertainment toy, to the military training world. This evolution was motivated by

the possibility of offering low-cost training in safe conditions before engaging

pilots in real flight. After the PC boom in the early 1990s, simulations were

brought to the general public and the computer game industry started to apply

the same software technologies used in military simulators to computer games.

The success of the computer game industry made the game technology surpass

the visual simulation technology, applying more realistic video and sound.

According to Dr. Michael Zyda, citing the 1997 “Report from the Computer

Science and Telecommunications Board of the National Research Council,”11

games and interactive entertainment, not defense research expenditures, have

become the main technology drivers for virtual environments. Modifications of

COTS computer games are being applied in military and other kinds of training

as well. For example, according to the DARWARS project website:

13

DARWARS is a DARPA-funded project to accelerate the
development and deployment of the next generation of experiential
training systems. These low-cost, web-centric, simulation-based
systems take advantage of the ubiquity of the PC and of new
technologies, including multi-player games, virtual worlds,
intelligent agents, and on-line communities.12

There are some characteristics of games and visual simulations that are

interesting to note: a game has a goal and competition, and is winnable and

emotionally involving. It is also fun (or it is supposed to be fun) for the player, has

no obligatory relation with reality and creates challenges for the player10.

Simulations, on the other hand, are realistic, as physically correct as possible,

involve no competition, and are methods for learning.

Despite these differences, they have a lot in common and we can go from

simulations to games easily by introducing some game characteristics into

traditional simulations.

The use of games in training is an attempt to increase training transfer and

retention, increase trainee motivation and involvement, reduce costs, and

maintain a flexible and agile training cycle10.

 2. Motivation and Involvement
Motivation and Involvement are key points to be analyzed when trying to

increase training transfer. One way to achieve these points is to emotionally

involve the trainee in the process. This is a technique the entertainment and

game industry uses very successfully.

This new generation of trainees is known by several names, such as the

Wired Generation, the Connected Generation, and the Digitally Born Generation.

Dr. Michael Macedonia stated that this generation established different thinking

processes, characterized by multiprocessed thinking (doing more than one thing

at the same time and fast spanning attention between tasks); concentrating focus

on multimedia and not pure text; learning experience preference changing from

passive to experimental learning; reasoning is more concrete than abstract and

deductive; thoughts are organized in a more easily accessible way (like

14

databases), rather than in a linear step by step way; and the ability to work on

tasks over a substantial period of time with full concentration if well stimulated13.

This echoes research conducted by the Jupiter Research Company for

advertising agencies14. The favorite leisure activities for men between 18 and 34

years old are web surfing (22%), watching TV (22%), playing videogames (16%),

watching movies (15%), reading a book or magazine (6%) and listening to or

playing music (4%).

Prensky says that people growing up in the last 20 years are digital

natives and have spent 10,000 hours playing video games, read 250,000 emails,

talked 10,000 hours on cell phones, watched 20,000 hours of TV, 500,000 hours

of commercials and spent less than 5,000 hours reading a book15.

These are the kinds of people that need to be motivated to learn or train.

The training technology to be used must fit them. In military training, it is a real

challenge to adapt a training technology to get these people well trained in an

efficient way in the shortest time possible.

Several examples can be noted as initiatives to integrate games, PC

simulations and military training: the previously mentioned DARWARS project12,

the creation of the Institute of Creative Technologies (ICT) by the Strategy

Training and Instrumental Command (STRICOM) of the U.S. Army and the

University of Southern California16, the Army Game project started at the MOVES

Institute at the Naval Postgraduate School, which created the game America’s

Army, an advertising game designed to help increase Army recruiting.

 3. Training and Development Costs
It is clear that the use of PC hardware is cheaper than the use of big

simulators or real live training. Visual Simulations running on inexpensive

hardware can have a very fast software development cycle, much like game

development, when a game modification can be developed in weeks and run on

almost any existing PC.

The important point is to concentrate efforts on the most important part of

the simulation, audio and video, and to analyze whether the training transfer is

15

satisfactory by mapping the training tasks according to what can be done using

live training, big simulators and PC simulators.

However, even game-like development is not cheap enough to be applied

in massive military training. The game industry is mainly driven by high cost

proprietary development tools and products. Even though cheaper than a

complete full simulator development, a custom game development still has high

costs for limited budget scenarios.

From the America’s Army (AA) development experience, it is important to

note that the development cost could be as high as four million dollars. The main

costs involved are personnel payment and software licensing. In AA, a team of

about twenty-six people was used and the game-engine licensing (UNREAL) had

a large influence on the final cost17.

Typical Costs Year1 Year2 Year3 Year4

Game Engine and Tools $ 300K $100K $100K $400K

Development Costs $2.0M $2.5M $2.5M $2.5M

Operational Costs $1.5M $1.5M $1.5M $1.5M

Total $3.8M $4.1M $4.1M $4.4M

Table 1. America’s Army Costs (From Ref. 17)

 Game-engine costs include the engine itself and authoring tools. Game

engine licensing is a problem in using this model for massive training. All modern

game or visual simulation software development is based on the engine, a

computer graphics API, which will be discussed later. If it is necessary to

distribute the source code for customizations, license price can be a problem, as

stated in the paper, “From Viz-SIm to VR to Games: How We Built a Hit Game-

Based Simulation.”17

16

Traditional simulators, in addition to software development and licensing,

require specialized hardware for motion or mockups to reproduce a real scenario.

Prices increase in all areas where these features are added and flexibility is lost.

For example, to develop and install a simulator for a Landing Craft Air Cushioned

Vehicle (LCAC) was estimated to cost twenty-nine million dollars in 2000, not

including annual maintenance and operational costs. The price of bringing people

to a centralized location for training must also be included18 in operational costs.

4. Uses and Limitations
Games and PC simulations cannot be a substitute for every kind of

simulator or real training. Three dimensional simulation games, however, allow

users to engage in cognitive training, think process training.

As graphics technology advanced, PC applications started to be used also

for familiarization training, mission rehearsal and hypotheses evaluation, and,

when the networks were added, they started to be used also in team coordination

and basic tactics training 19.

However, there are limitations when using this kind of training. For

example, to simulate people when a behavioral-based situation is needed, limited

choices render the simulation unrealistic. When trying to mimic interpersonal

situations, like a conversation, some artificiality is also introduced and the

thinking process will be different from a real scenario. When simulating very

dynamic systems, like fighter jets, even a full motion simulator has limits, another

limitation is when too much emphasis is placed on the environment of the training

scenario; we cannot simulate falling rain or dust in a computer simulation20.

These effects can be used, but it must be understood that their use is limited. PC

Visual simulation based training seems like a good fit in terms of low-cost

massive training for young people, especially if the goal of the training is basic

cognitive skills.

One limitation in adopting PC-based Visual Simulations for training is

acceptance by senior executives or officers who are used to live training and

learning from real, not virtual, experiences. The major challenge is to prove that

17

its use will increase the process productivity, i.e., PC-based Visual Simulations

reduce cost and increase capability21. A low cost development solution turns

easier to proof this equation.

C. VISUAL SIMULATION DEVELOPMENT
1. Introduction
After looking at visual simulation uses, human factors and PC hardware

limitations, we now focus on the visual simulation development process.

The process proposed is based on processes used in the game and

animation industry. The model presented is a merge and simplification of two

processes, one from an animation film production and the other from a video

game development. These processes are closely related to the engine being

used. The goal here is to present a process independent from a specific engine,

to later identify the software tools and engine needed for each phase and to look

at OSS/FS alternatives.

2. Development Process
The first process, presented in Figure 2, is from the Disney/Pixar’s

animation movie Toy Story, the first full-length, completely computer generated

3D animated movie22. The second process, presented in Figure 3, is from the

America’s Army game development17.

A major difference is that the animation production pipeline is aimed at

offline video rendering performed by the camera department (Figure 2). In game

development, the goal is a Game Level creation, or a scenario to be interactively

played (Figure 3), and the video is rendered in real time.

In both there are common roles for animators, 3D modelers, sound

engineers and artists. In the animation process programmers cannot be seen,

probably because it is assumed that they are using a finished engine and are not

adding any functionality to it. In game development, programmers hold a key

position17. A point that is not presented in the game hierarchy is the design

document creation, a starting point similar to the story and storyboard in

animation.

18

Some common roles are:

• The project leader or director is in charge, managing the team and

ensuring that all parts follow the guidelines expressed in the design document or

story board.

• Programmers take care of the game engine development,

maintenance and scripting programming (AI, new functionality), and put

everything together to be rendered or tested.

• 3D Modelers create all the models, characters and objects.

• Graphical artists are in charge of the textures and lightning

creations.

• Sound engineers create the sounds (if needed).

• Animators use motion capture tools to create animation scripts.

In small projects, roles can be merged to have, for example, a 3D

modeler/artist and a programmer/animator.

Figure 2. Animation Production Pipeline (From Ref. 22).

The game development pipeline from the America’s Army project is

presented below, it is presented as the hierarch relations between the team, but

we can easily infer the process dynamic from the Figure.

19

Figure 3. Game Development Hierarchy (From Ref. 17).

By simplifying and merging roles, a hybrid process is proposed to fit small

developments (Figure 4). The roles of each position are generally explained and

the goal is to create a process agile enough for a rapid development life cycle.

The OSS/FS tools to be used in that process are described in terms of

features and licenses schemas in Chapter III.

20

Design Document

Engine

3D Modeling Programming

Textures Sound

Animations

Lights / Special Effects

Final Product

Figure 4. Simplified Development Process Proposed.

 The project leader/manager supervises the entire process. The engine is

chosen/developed depending on the requirements listed in the design document.

The engine is the first tool needed and the one chosen will influence all other tools

selected. There are proprietary and open source tools, and selection of the engine

based on the open source environment is presented in Chapter III. Something

that must be very clear at this point is that the engine is the base for the visual

simulation or game development and after this choice is made, the project is tied

to the selected engine almost forever.

Programmers work in engine programming, application development and

animation. The development environment, or Integrated Development

21

22

Environment (IDE), is directly related to the OS and the engine, and will need

compilers or interpreters (scripting) for the high level programming languages

used.

Artists use a 3D modeler program, a graphical image editor, to create

textures and special effects. Sound engineers use some kind of sound editing

program to create the sounds for the simulation.

The final iteration in the development process is performed by

programmers using the engine to put everything together, and compiling and

creating the distribution package or rendering video if an off-line product is under

development.

3. Authoring Tools and Engines
Types of tools and engines needed in every phase are listed below.

Selections of specific programs are presented in the next chapter.

• Document Design and Management: regular office tools like

spreadsheets, word processors and electronic mail programs.

• Programming: compiler, editor or IDE for the programming/scripting

languages used in the engine with high-level functions and tools.

• 3D Modeling: 3D modeling program.

• Texturing: 3D modeling and image editor program.

• Sound: sound mixing program.

• Animation and Special Effects: High level functions and tools from

the engine or in the 3D modeling program.

 Normally a game\visual simulation development uses an engine, 3D

modeling software, animation software, and an image editor. A sound mixer can

also be included in the package to create or edit sounds, but sounds can also be

externally recorded and introduced in the final product using the engine

functions.

23

 As already noted, the engine is the most important part and it is the layer

that will connect all content created in the final game\simulation.

 To illustrate the possible costs and options, some popular software tools

are listed in the table below:

Software Utility
License

Cost
Observation

UNREAL

Game

Engine and

Editor

$7,999.00 +

$5,000.00

Various licensing

schemas

Visual Studio .NET $759.00 Per machine

Borland C++ Builder X
IDE

$2,500.00 Per machine

3D Studio Max $3,145.50 Per machine

Maya 6.5

3D Modeling

and

Animation $6,999.00 Per machine

Adobe PhotoShop CS Image Editor $ 599.00 Per machine

Various
Sound

Mixing
$ 25.00 Average price

Table 2. General Software Licensing Costs

 (Prices verified on-line in July 2005.)

4. Development Problems
From Table 2, it can be inferred that visual simulation development is an

expensive activity. Issues related to flexibility and personal costs must still be

addressed. If the goal is massive training, low costs and versatile solutions are

needed. The use of open source software is an attempt to achieve reasonable

costs and flexibility, allowing the application of 3D visual simulations applications

in new areas like military training.

24

It may seem that cost is the only reason to look at an OSS/FS solution but

there is another important reason - the freedom to change and adapt the

software according to training needs and independence from a unique vendor.

These points are discussed in the next chapter.

In the Handbook of Virtual Environment Technology, Chapter 26, David

Gross points out that a “killer” virtual environment application must appear to

increase acceptance of the technology. The idea is to find an application as

important to the commercial acceptance of VE as the spreadsheet was to the

commercial acceptance of the PC. In fact, in areas like entertainment this

application already exists in the form of games. The game industry is in some

way pushing the hardware development when asking for better video cards and

high speed CPUs. A more efficient and versatile visual simulation development

that can be used in massive training could create a situation where a virtual

environment “killer application” will be created in the form of a game-like interface

for several types of training software.

One of the main reasons that limit the use of this technology is the high

cost associated with building a game or simulation designed to learn. The

expense associated with game engines is incurred before investments in

developing content or learning return analysis, and engine dependency is

created in the very beginning of the process. There are also cases where the

engine became too expensive or the owner decided to stop its support.

Transferring content and code from one engine to another is almost impossible32.

The Mythical Man Month from Frederick Brooks stresses that expensive and

large projects with many function points tend to fail 33, and visual simulations can

turn into big projects. To use visual simulations for training, simple and

inexpensive projects are needed. The selection of tools and engines is crucial

from the very beginning in order to allow a project to be simple and flexible

enough to be used as training or teaching tool 32.

To make a project simple, flexible and inexpensive, based on the

development process presented in Figure 4, the next chapter looks at OSS/FS

25

tools that can be used in each phase of the process. First, OSS/FS is generically

presented and the most common licensing issues are noted, then a method for

selecting and analyzing these tools is presented. Finally, tool and engine

selections are presented.

26

THIS PAGE INTENTIONALLY LEFT BLANK

27

III. OSS/FS SOFTWARE FOR VISUAL SIMULATION
DEVELOPMENT

A. OPEN SOURCE SOFTWARE
1. Introduction
This chapter is divided into three parts. In section A, a general analysis of

open source software/free software (OSS/FS), including licensing problems and

advantages, is presented. Next, in section B, a framework to select open source

software projects is proposed. The last section lists OSS/FS tools to be used in

visual simulation development, along with an open source visual simulation

engine.

In discussing costs associated with game development, Michael Zyda, et

al., in the paper “From Viz-Sim to VR to Games: How We Built a Hit Game-

Based Simulation” (From Ref. 17), noted the reason to look at this kind of

software when designing military training simulations:

 …if we are really to follow the path towards game-based
simulation, DoD needs an open-source game engine yesterday.
DoD also needs to consider open sourcing the painstakingly
developed art within its games, so teams don’t throw scarce
resources at reinventing 3D soldiers, weapons, and environments...

The initial motivation is economic, but the liberty to change, adapt and use

other’s work is also present in the text above. These are common points when

analyzing open source initiatives - they do not directly cost money and there is

liberty to change them if needed. For training/educational projects, these points

look like a great advantage over proprietary software.

Here, a more radical idea is presented: a completely open source

development, using not only free engines and 3D content, but also an open

source set of tools during the visual simulation development.

Freedom is very important in the development process, but this freedom

comes with a price. In OSS/FS sometimes there is lack of support, the user

interface is less intuitive and there may be unreported bugs. For this reason, a

28

decision to adopt an OSS/FS tool in any project must be made with caution and

the possibilities must be very clearly understood.

At this point it is necessary to understand the licensing schema involved

because it can have a big impact on the final product distribution.

2. Open Source Licensing
One of the fundamental ideas behind open source licenses is to deny the

exclusivity in the exploitation of a work. The purpose is to give the largest number

of people available the opportunity and the freedom to distribute and change the

code, thus creating a community of users or developers. This idea does have

limitations, as any derivative work must have a kind of license consistent with the

original software. Sometimes this point is enforced radically, like the GNU

General Public License (GPL). Sometimes it is enforced in a more flexible

manner, like the GNU Lesser\Library General Public License (LGPL). These two

are the two major OSS\FS licenses, but there are several others, each one

sponsored by different organizations23.

According to Andrew M. St. Laurent, open source licenses make possible

three improvements when compared to the traditional proprietary software

licensing models23. These improvements:

• Allow more possibilities for innovation - more people contributing in

a project make the project better.

• Make the software more reliable because there are more people

checking the code, finding and solving problems.

• Increase the longevity of a program because if a group or

organization gave up controlling the development, another group or organization

can catch up and continue the project.

The open source initiative (OSI) has parameters and definitions that allow

the certification of a license as open source. These parameters are always

updated, but basically there are 10 points that a license must comply with to be

known as an open source license. These points are24:

29

 1. Free Redistribution: Paid or not, free as freedom.

 2. Source Code Available: Distributed together or not.

 3. Derived Works: Allow modifications.

 4. Integrity of the Author's Source Code: Must be preserved.

 5. No Discrimination Against Persons or Groups.

 6. No Discrimination Against Fields of Endeavor.

 7. Distribution of License: Allow derivatives distribution.

 8. License Must Not Be Specific to a Product.

 9. License Must Not Restrict Other Software.

 10. License Must Be Technology-Neutral.

 The most frequently used open source licenses are listed below. The goal

of the list is to allow for comparison of their main characteristics, not to underline

all the details of each licensing schema 23:

a. MIT / X License
This is a very simple license that originated at the Massachusetts

Institute of Technology (MIT). Derivatives can be distributed in any way. This

license can be used in commercial software or not and the source code could be

available or not. There are practically no restriction to the use, redistribution or

changing of the original code. It is also known as X license because it is used in

the Linux X window system.

b. BSD License
A little more restrictive than MIT, this is an acronym for Berkeley

Software Distribution. This license schema was created at the University of

California, Berkeley. The licenses before 1999 had a problem related to the fact

that every advertisement of software under that license was required to have a

specific phrase giving credit to the original developer. As the software grew and

became popular this list began to increase in a way that made commercial use

difficult. This clause was removed to facilitate the advertisement and commercial

30

use of the software. Like the MIT license, derivatives work can be distributed in

any way. The only restriction is to include credits from the original work.

Derivatives can be released under the same license or not.

c. Apache License
This is a more elaborate license created by the Apache Software

Foundation to release the Apache web server. The current version is 2.0 and

was approved in 2004 in an effort to allow the use of the license in more projects

outside the foundation and to create compatibility with the GNU/GPL licenses.

Basically, this license is more explicit than the previous licenses, but still allows

derivatives to use other forms of the license.

d. GNU General Public License (GPL)
The GPL, as with all the licenses created by the Free Software

Foundation (FSF), has the limitation that all software derived from the original

work must follow the same license, with the source code available for any

modification by the users. This license is much more meticulous than the MIT,

BSD and Apache. Its main concern is to keep the software free and available to

everyone23. This license limits the commercial use of the software and must be

used with care. The common business model associated with the GPL license is

to provide support or warranty for a certain program, or to distribute the software

in a more convenient way.

e. GNU Lesser General Public License (LGPL)
The LGPL was created by the FSF for the specific case of software

libraries developed to be linked to other programs. It is allowed to be used

together non-GPL programs in certain ways. It permits the distribution of software

under proprietary licenses linked to libraries under LGPL licenses - if the libraries

were GPL the distribution would have to be GPL also. There are questions about

dynamic and static linking regarding the use of the LGPL license that make its

use sometimes tricky and complicated. Normally, the LGPL libraries must be

distributed under their own license, with the source code available and static

linked to other programs. In this case, the program that links to it can have other

licenses.

31

f. Mozilla Public License (MPL)
This license was created by Netscape to be used in the Mozilla

Project when the Netscape Communicator web browser was open sourced. It is

a combination of ideas between GPL and BSD licenses23. Programs copied or

changed from MPL code must stay as MPL, but the same software can be

combined with proprietary programs being released as proprietary code. The

FSF imposes has restrictions on the use of MPL code together with GPL code.

The Mozilla project is trying to release its code under a tri-license schema

MPL/GPL/LGPL to solve that issue.

g. Q Public License (QPL)
This license was designed by Trolltech, a Norwegian company, to

distribute the QT Toolkit. QT is a program used to develop Graphical User

Interfaces (GUI), and it was the first license used to release the popular Linux

GUI KDE. Because of concerns about the use of KDE as a non-GPL program,

Trolltech changed the QT license to use both schemas, QPL and GPL.

Derivatives can be distributed in the form of patches, so contributors can

distribute their patches in different ways from QT itself. Today the company is

encouraging people to use GPL instead of QPL and has created a QT

Commercial License for proprietary software distributions 28.

h. Artistic License (Perl)
This license was originally created to be used with the Perl

programming language (with some modifications). It is not used as much as

other licenses because it is considered vague and confusing. Because of its

vagueness, the FSF does not consider it a free software license. Programs

developed using Perl cannot allow the modification of the standard Perl package

itself.

A list of licenses is provided in Table 3, below. The Table details

whether a license is compatible with GPL (i.e., whether code can be used

together GPL code), and whether derivatives software must follow the same

licenses. Examples of software released under the licenses are provided:

32

 GPL
Compatible26

Derivatives Work
Licenses

Software under the
License

MIT/X Y Any X Window System (X11)

BSD Y Any OpenBSD, FreeBSD

GPL Y GPL LINUX, MYSQL

LGPL Y Any with restrictions Delta3D, OpenOffice

Apache N Any Apache Web Server,

Jakarta Tomcat

MPL N Any with restrictions Mozilla Web Browser,

Firefox Web Browser

QPL N QPL Old versions of Qt

Toolkit and KDE Desktop

Environment

Artistic
License

N Any with restrictions Standard Perl

Table 3. Open Source Licenses

These licenses are listed to help the general understanding of the

OSS/FS scenario and the rules applied to the programs that will be described in

section C. There are more issues and concerns related to each license but

further discussion of those issues is out of the scope of this work.

3. Problems of OSS/FS
There are some known problems associated with open source software

and it is interesting to discuss them in the context of software development. The

five points presented below were listed by George Weiss from the Gartner Group

33

when explaining the difficulties for Linux in penetrating in large enterprises29.

These points are not Linux exclusive and can be extrapolated to any OSS/FS

project:

• OSS/FS is known for the potential for multiple source code

distribution, causing fragmentation and interoperation issues. This statement is

proved by the forkings and derivations of several OSS/FS projects. A

development using an open source environment must control versions and

upgrades in a safe manner, such as choosing more stable versions and delaying

updates as much as possible.

• Higher support costs increase the total cost of ownership (TCO)

with demanding workloads. In a teaching and training environment, the TCO can

be significantly reduced by using OSS/FS, looking for standard packages and

researching the better combinations of several tools.

• OSS/FS licenses could proliferate beyond the ability to manage

them. During project development, the licenses of the tools and libraries that will

be part of the final product must be well analyzed. The license schema chosen

must conform to the business model intended for the project.

• Frequent software releases can create potential compatibility

problems. This issue can be addressed by using the same initiatives presented

before, version control and delaying updates (“playing safe”).

• Dependency issues, such as potential patent and copyright

exposure, could raise risk management concerns. To address the dependency

issue the software used must be chosen carefully with a method looking for

mature and stable options. The copyright and patent issue is addressed by the

license schema. One way to preserve secrets is keep the data closed but the

application open.

• Usability is also an issue as open source software may require a

more technical user approach. However, in an educational environment, where

34

one might expect to find more people with technical skills, this could be an

advantage.

4. Open Source Advantages
The first item to address with regard to OSS/FS is cost. Using this kind of

software does not mean the cost is zero, but it does create an opportunity to

migrate the budget from buying software licenses to other development issues,

for example, to increasing training.

Low cost is not the only advantage identified: in an education and training

environment, flexibility and freedom from vendors are even more important.

Open standards are another goal to pursue when looking to massive training.

5. Hardware and Open Source Driver Issues
The lack of hardware drivers, especially when using or developing visual

simulations and graphics applications, cannot be forgotten. This used to be a

major issue, especially related to Desktop Linux; today the scenario is a little

better but, because the graphical cards market is driven by the game industry,

and games are a major windows application, the latest video cards could not be

automatically supported by the original vendor in an open source environment.

Even though Linux is being advertised as a supported OS by the two

major graphics cards companies, ATI and NVIDIA34, the community supported

drivers are better options because they normally offer more stable and up-to-date

versions.

The hardware configuration must be always under control, and upgrades

and updates to the hardware and software must be carefully analyzed before

being adopted.

During the test development presented in Appendix B, it is shown that

after every update in the OS kernel (Linux Fedora Core 3), it was necessary to

wait some weeks for the release of the new video drivers.

The approach recommended from that experience is to delay the updates

and to maintain a current working version of the entire development environment

35

before going too far into a new version. This strategy can be applied for all the

software and tools used during development.

In the next section, a framework to select and evaluate open source

software is presented. Section C introduces the tools used to develop the

Appendix B Visual Simulation Application.

B. SELECTING AND EVALUATING OPEN SOURCE SOFTWARE
1. Introduction
The evaluation and selection of open source software is not very different

from a proprietary software selection process. The framework presented here is

based on the proposal by David A. Wheeler30 and follows four steps: Identify,

Review, Compare and Analyze. This process was used in the selection of the

tools and programs used in a visual simulation development and is detailed in the

next section.

2. Identification of Candidates
The identification starts with the requirements list. Based on that list the

candidates programs are selected. Again the 80/20 rule can be applied. It is

difficult, if not impossible, to find even a proprietary program which satisfies all

the requirements. If there is sufficient manpower to contribute to the project,

customization possibilities can be looked as an option to add the functionalities

not included in the program. This alternative can be very costly in the proprietary

world.

Market share and popularity are good starting points to get a general idea

about what is being offered. In OSS/FS solutions it is always important to look to

the project activity and community support. The two the main repositories of

Open Source projects are the websites SourceForge.net and FreshMeat.net35,

and both have mechanisms to verify the activity and popularity of a project. The

inclusion of a program in the mainstream Linux distributions is another good

indication that a mature program is under consideration.

3. Reviews
After identifying the candidates, the next phase is to look for reviews and

tutorials about the programs previously selected. Market share or popularity can

36

be considered an indirect review and a good reference about a program30. In the

OSS/FS world it is sometimes difficult to measure the market share of a program

because people can just download the product, use it and discard. Wheeler

outlines an interesting way to analyze the market share of these programs by

looking in a search engine like Google to see how many pages are linked to the

project page. In Google this can be achieved typing keyword “link:” followed by

the URL of the website in the query box (i.e., link: www.delta3d.org)36. This can

be used to gather information about people that not only downloaded the

program, but are using it and referencing it from their own project pages. Another

method for an informal review is to solicit input from professionals, colleagues

and co-workers working in the field.

4. Comparison
This is the most difficult and time-consuming phase. The goal is to

eliminate candidates and reduce the initial list for the analysis phase. Topics to

be compared are frequently asked questions, documentation, examples, tutorials

and mailing lists, etc.

The dynamism of OSS/FS and the forking phenomenon (when a project

splits in two different projects) can make comparison difficult. The following list of

attributes extracted from Reference 30 can be used in the comparison process:

• Functionality: The integration with existent software, hardware, OS

and other programs used during the development must be analyzed. Few

programs have all the functionality needed, and normally they are used together

with other programs. In OSS/FS, it is possible to add functionality, this is a

differential, but can increase development cost and time. The effects of such

additions must be weighed before a final selection is made. OSS/FS provide also

the possibility to add functionality; this is a differential, but doing this increase

development cost and time and must be weight before the final selection.

• Costs: OSS/FS does not mean the program is necessarily free, with

no cost: it means that there is freedom to change and use the program. What must

be compared is the Total Cost of Ownership (TCO). TCO includes all the costs

37

related to using, distributing and maintaining a program, including factors such as

manpower, staff qualification and training.

• Market Share: Verification of how popular the program is. It may be

difficult to verify popularity in the OS/FSS world, but it is an important indication of

a program’s maturity and stability.

• Support: OSS/FS software can have paid support provided by

different vendors, this is one of the business models used. The starting point to

compare support could be the project website and the list of organizations

contributing to the project. They are the first option for software support. The

second option is large community projects, where the support is the community

itself. In the case of community support, there are some risks involved because of

the informal and sometimes chaotic way the communities are formed. One

possible way to reduce the risk is to rely on community support only when there is

enough knowledge in-house about the software30.

• Maintenance: Maintenance is directly related to the longevity of the

project and it has the same options as support. A major advantage in the case of

OSS/FS is that the self-maintenance is facilitated by the open nature of the source

code. If the project becomes stalled, it is possible to turn over maintenance to an

in-house team. Of course, as mentioned before, there are costs and time

implications involved.

• Reliability: To test software reliability, the option is to create pilot

cases and real work load tests. Mature projects tend to be more reliable than fresh

ones. SourceForge.net and FreshMeat.net35 both have mechanisms to measure

the maturity, and by inference, the reliability of projects. Another comparison point

is the inclusion in the most popular Linux distributions.

• Performance: The only way to compare performance is to undertake

runs with real world data. In the specific case of visual simulations, this requires

loading different scenarios and 3D databases, and then testing framerates in

different hardware configurations.

38

• Scalability: Can be compared by studying real case scenarios. It is

basically a case study comparison. If there is no known case to be studied the pilot

test is an option.

• Usability: The learning curve of a program is directly proportional to

its usability. Today’s applications must have a GUI because GUIs are the most

acceptable way to interact with a program. If the analysis is about an API, a GUI is

not relevant, but the way it interacts with other programs, libraries and OSs is a

key to assessing its usability. There are several GUI guidelines. In Linux, the two

most commonly used GUIs are the KDE and GNOME, and both have guidelines

listed on their websites37. It is interesting to compare which guideline is followed by

the program of interest. A usability test is an option if more information is

necessary.

• Security: One could assume that the possibility to search and read all

the source code in OSS/FS will allow the identification of any security issue, but

this is not viable option because the size of the code involved can easily reach

thousands of lines. A good hint about security and reliability can be obtained by

looking at who and where the program is developed. Looking at users may also be

necessary, and if still not enough, a deeper security analysis must be performed.

• Flexibility/Customizability: This is the great OSS/FS advantage over

proprietary software; OSS/FS can be modified as necessary, in house if there is

sufficient knowledge or through several external contractors. If customization is

necessary, the associated costs must be considered.

• Interoperability: To compare interoperability it is necessary to look at

what standards are followed by the program and if they are in accordance with the

standards used in the project development, such as file types, OS, network

protocols and so on.

• License/Legal Issues: The license schema must be carefully

analyzed, understanding the type of licenses described in section 2 of this chapter.

The licenses used, especially in libraries, to be incorporated in the project must be

39

in accordance with project guidelines and future intentions. External help may be

necessary to compare all licenses and contracts issues. This is more a developer

than an end user concern.

• Other: Public policies and guidelines are relevant every time an

application or program is used, especially in a military scenario. The MITRE

Corporation prepared a study for the Defense Information System Agency that

recommends the use of OSS/FS in the Department of Defense (DOD) for

application development. Several tools and libraries, as well as licensing issues,

are addressed38 in this study.

5. Analysis
The evaluation phase is the time to deeply evaluate the topics previously

presented and to perform a last analysis before making a final decision on the

software used.

For example, one point that can be better explored is to identify who

controls the project development. There are reasons that development controlled

by a formal organization is preferable. Community projects depend on unpaid staff

and group consensus; they have a slow evolution and tend to have fewer people

working in some areas, such as documentation and support. A formal organization

can hire more people as needed and there is no need to build consensus to plan a

project roadmap. This is an advantage presented in the Delta 3D Visual Simulation

engine that is described in the next section. On the other hand, when there is

dependency on a single organization to manage a project, their roadmap has to be

followed and a dependency can be created, similar to the dependency involved

when using proprietary programs. Community projects can be constrained by lack

of volunteers or management direction; formal organizations can be constrained by

budgets and profits.

The visual simulation technology and development process was presented

in Chapter II. OSS/FS selection and evaluation was presented in previous sections

of this chapter. The tools, libraries and API used to develop a visual simulation are

presented in the final sections of this chapter. The visual simulation developed is

described in Appendix B, which also illustrates the concepts and provides

examples of the OSS/FS tools used in 3D graphics development in a complete

OSS/FS environment.

The figure summarizes the selection and evaluation process:

40

Candidates
Identification

Reviews Comparison Analysis

Attributes:
Requirements

Figure 5. Evaluation and Selection Process.

C. OPEN SOURCE TOOLS AND ENGINES FOR VISUAL SIMULATION
DEVELOPMENT
1. Introduction
The hardware boundaries in the scope of this work were set in Chapter II.

The hardware used is a COTS personal computer with regular input devices

(keyboard and mouse) and a regular display in a reasonable size (17”). In the PC

world, when looking to open source technology, attention automatically turns to

Linux. This is the open source OS of choice because of its stability and support.

There are several distributions available, some aiming at servers, others at

desktop users and so on. We compare two distributions that rely on different

business models: Fedora Core and Debian.

 Functionalities Web Deep
Inspection in
the most
important
attributes

SourceForge.net Costs Market Share Google Freshmeat.net Support Maintenance Professionals Linux Distributions Reliability
Performance
Scalability
Usability
Security

 F

in
al

 D
ec

is
io

n

Flexibility
Licenses
Others

41

Fedora Core 3 has community support and a formal organization backup

provided by RedHat, one of the primary Linux vendors. Debian, on the other hand,

is a completely community supported distribution. In the development presented in

Appendix B, the selection of Fedora Core 3 was driven by the support available

(community plus a company), stability, tools available, and existence of pre-

compiled versions of the libraries used. The Fedora Core 4 release was not

selected in order to stay one step behind the latest version and thus be able to

evaluate stability. Appendix A includes tutorials and references to install this

distribution and set a development environment.

The architecture chosen is a regular PC running Linux OS (Fedora Core 3).

Tools, engines and libraries are selected based on this first platform option and

following the process presented in Chapter II, section C.

Some of the tools are already part of the Linux distribution package, such as

the GCC compiler, Python scripting language, Emacs text editor and GIMP image

editor. Other tools were selected later. The hardware drivers need to perform the

3D graphics (OpenGL) and the audio drivers (OpenAL) have to be installed and

updated.

The drivers are points that can turn the OSS/FS development option harder

than a proprietary solution. They must be very well analyzed based on the

particularities of the hardware and OS used. Having installed the drivers and

selected the first tools and programming languages, the next phase is to choose

the simulation/game engine, which may be the most important decision in the

project. After this point, all development will be tied to the engine selected.

Delta3D42 was selected based on support availability and compatibility with

the OS, languages and environment. The strong institutions supporting Delta3D

compensate for the lack of community support. The well-known libraries in its

dependencies list are also a good indication of stability, even in a situation where

the engine cannot yet be classified as a mature project. Its biggest problem may

be the lack of case studies and projects using the engine, but other OSS/FS

engines are in the same level of maturity. For example, Ogre3D48 cannot be

42

considered a full engine; it is more a 3D scene render engine and it lacks some

functionality needed, such as physics and sound, being supported only by the

community. Panda3D49 is supported by formal organizations but is aimed more at

entertainment games than visual simulations. Panda3D has one successful case:

the game that originated the engine.

Table 4 lists each phase of the process and the general OSS/FS options

made with the related proprietary tools:

 OSS/FS Proprietary

Management and
Documentation

OpenOffice
Microsoft Office, Corel

WordPerfect Office

Engine Delta3D Unreal

Programming Tools
GCC Compiler and

EMACS text editor
Microsoft Visual Studio .NET

3D Modeling Blender, Wings Maya , 3D Studio Max

Image Editing GLIMP Adobe Photoshop

Audio Editing Audacity Adobe Audition

Special Effects Delta3D Engine Utilities Maya , 3D Studio Max

Table 4. Proprietary and Open Source Tools

Now only the tools directly related to the visual simulation development will

be detailed. Generic tools like the compiler, text editors and office tools are

considered out of the scope of this thesis, as they are not specifically used for

visual simulations developments, but for any software development.

2. OpenGL
OpenGL39 is the acronym for Open Graphics Library. It is a low level

graphics API that originated from the IRIS GL created by Silicon Graphics (SGI)40.

Today, OpenGL is the most popular low-level graphics API and the only one that

43

allows Linux/Windows portability. It is being used in the development of interactive

2D and 3D graphics applications. Because of its popularity, OpenGL is very well

supported by the graphics cards vendors and has hardware drivers for most of the

Linux distributions.

The first OpenGL standards were founded with the creation of the OpenGL

Architecture Review Board in 1992, which concentrated the major players in the

computer graphics world. It allows rendering, texture mappings, special effects and

other visualization functions. There is plenty of on-line documentation and books

about OpenGL programming being a natural choice for Open Source

developments together with Linux.

3. OpenAL
OpenAL41 is the audio counterpart to OpenGL. OpenAL stands for Open

Audio Library. It is a 3D audio API used with gaming and simulation applications.

Like OpenGL, it is cross platform and well supported under LINUX. Its architecture

is a little more modular than OpenGL and the main reason for its creation was the

need to standardize sounds API.

It is supported by many hardware vendors and has strong support from the

main audio hardware player, Creative Labs. Though not as popular as OpenGL, it

still has good community support and hardware drivers for several OSs. It is being

used in several multiplatform commercial games

4. Delta3D Visual Simulation Engine
The selection of the Delta3D42, as already stated, is based primarily on the

functionality and support available, but also on its development dynamism and

license characteristics. The version used in this research was the 0.8.6

Among the organizations supporting Delta3D are the Moves Institute, the

Naval Education and Training Command, BMH Associates and the Marine Corps

Program Manager for Training Systems. Its website now has 304 registered users,

the average number of unique visitors per month is around 5,000 (since July 2004)

and the program has been downloaded from SoruceForge.net by 13,321 users as

of July 2005. These numbers indicate that a community is starting to form.

The engine itself is a thin layer created on top of several open source

libraries, API, and projects. It provides a set of classes that make difficult tasks

from the low level libraries easier to program using the higher level functions and

classes. A differential in the project are the utilities provided together with the

engine to help the development process. These include a 3D model

viewer/converter, Graphical Particle Effects Editor, BSP Compiler, HLA Graphical

Stealth Viewer and, in future versions, a Scene Level Editor.

The diagram in Figure 6 shows the low level libraries the Delta3D version

0.8.6 depends on.

44

Figure 6. Delta 3D Dependencies Architecture.

This project is a good example of the use of OSS/FS in visual simulations –

it is like wrapping a library around several other open source libraries. The problem

with this strategy is that while it brings the best of the open source world in terms

of functionality, it also brings all the problems and deficiencies from the low level

libraries, which can compromise some of the functions needed. This could be

diminished as the project becomes more mature and interaction with the

community increases. A strong interaction among the project development team

and the dependencies libraries communities could greatly improve the stability of

the project. The licensing schema is LGPL, which provides enough flexibility to be

used in both the OSS/FS and the proprietary world.

45

Some of the dependencies libraries and tools of the project that were used

in the test development are detailed to understand the kind of libraries the engine

relies on and their utilities.

a. OpenSceneGraph
OpenSceneGraph43 is a rendering system that establishes a scene

graph to render a 3D scenario. It was created by Don Burns when he was an

engineer at SGI to support a hang-glider simulator. Robert Osfield was also an

early contributor. Today, both provide support through their own companies.

OpenSceneGraph is very popular and is being used by several developers to

create visual simulations, games, scientific visualizations and modeling. There are

several successful cases that denote a good maturity level. It is written entirely in

Standard C++ and OpenGL and runs on several platforms and operating systems.

Choosing OpenSceneGraph is a natural decision when looking to the available

open source rendering systems because of its support, maturity and features. It is

licensed under LGPL, which is a very convenient schema for use in the engine

itself. It can be considered the most important dependency of the engine providing

the basis to Delta3D.

b. Open Dynamics Engine (ODE)
ODE stands for Open Dynamic Engine44. It is an open source real

time physics engine formed by two components, one for rigid body dynamics

simulations and the other for collision detection. It is a high performance library

allowing good computer simulation of rigid body dynamics. It provides a C++ API

that is wrapped by the Delta3D high-level classes. ODE is useful for simulating

vehicles and objects in virtual reality environments and games. It is currently being

used in many computer games, 3D authoring tools and simulation tools, indicating

a reasonable maturity level. It is platform independent and licensed under LGPL,

like OpenSceneGraph.

c. Delta3D Viewer
A model viewer is a common feature in visualization engines and is

used to allow the inspection of static models before including them in a scene. This

viewer is a very handy tool in the previous analysis of 3D models allowing to check

the file formats supported by Delta3D and OpensceneGraph like: .3dc, .3ds, .ac,

.dw, .flt, .geo, .ive, .logo, .lwo, .lws, .md2, .obj, and .osg. The tool also permits the

inspection of textures, lights and orientation in the model and the conversion to osg

or ive.

Figure 7. Delta 3D Viewer.

d. Delta3D Particle Editor
This editor is a real time graphical particle systems editor used to

create OSG particle systems. This program facilitates the development and

creation of particle systems, allowing real time visualization of effects. This tool,

introducing functionalities not easily found in other tools, can be considered one of

the best tools delivered with the engine.

46

Figure 8. Delta 3D Particle Editor.

e. STAGE (Simulation, Training and Game Editor)
STAGE is the Delta3D Graphical Level Editor. It is a promising tool

that may improve and increase the use of this engine. It is used in conjunction with

the other tools and has the potential to speed up the development cycle. The editor

allows a visual construction of a scene world, including terrain, objects and actors.

It is intended to be an OSS/FS version of the UNREAL Editor based on the

Delta3D engine. It has the same types of viewports used by proprietary engines to

view, manipulate and navigate the world created. The program was not used in

this work because it was released after the selection of the version 0.8.6 and there

was not enough time to test the tool.

f. Other Libraries and Dependencies
As shown in Table 5 there are many other libraries used as part of

the engine. They are listed below with the versions used in the last engine release,

but they will not be detailed here as they were not directly used in the simulation

developed. These libraries were used only through high-level engine classes.

47

Library Version Function

CAL3D CVS: 2005-03-14 Animation

Crazy Eddie GUI 0.3.0 GUI System

glGUI CVS: 2004-03-09 GUI System *

FLTK 1.1.6 Windowing System

GDAL 1.2.6 Geospatial data reader

InterSense SDK 3.5.8 Input devices driver

TinyXML 2005-07-25 XML parser *

Xerces – C++ 2.3.3 XML parser

Replicant Body 1.8.4 Animation

Table 5. Delta3D Dependencies Libraries List
* These libraries are scheduled for deprecation in future versions.

5. GIMP
GIMP45 is an acronym for GNU Image Manipulation Program. This program

was developed by two students at the University of California Berkley; version 2.0

is now in release and the program is distributed under GPL. The program was

previously criticized for its difficult installation (it was only source code distributed)

and bad user interface. But after version 2.0 the reviews changed, indicating that

the program is a major player in the image editing scenario. It allows all common

image manipulation tasks such as photo retouching, image composition and image

authoring, and it is included in almost all LINUX distributions, indicating a very

good maturity level. It is also very portable, having several OS and languages

versions.

For basic and some advanced texturing, GIMP is a tool that can completely

substitute for proprietary programs like Adobe Photoshop and Jasc PaintShop

48

49

without loss of functionality. It is also well supported with literature and a lot of web

references. GIMP can be considered the basic image editor for the Linux and

OSS/FS world.

6. Blender

Blender46 is an open source 3D modeling and animation tool that also has a

built-in game engine. The program was used and analyzed only in the scope of its

3D modeling capabilities. The tool was used to edit and create 3D models that

were exported using one of the external plug-ins. This external plug-in feature can

be extended, adding new functionalities. The plug-ins are developed using the

Python scripting language and there are several 3D file formats

importing/exporting plug-ins already available. In the particular development

described in Appendix B, the OSG and 3DS exporters were successfully tested.

 The tool development is led by the Blender Foundation, a virtual foundation

currently without official offices, which is chaired by Ton Roosendaal, a Dutch

programmer who originally created Blender for a private company and later bought

the code and open sourced it. Blender is distributed via a publicly accessible

source code system under GPL, and it is well supported, having several

references in literature and web sites, including tutorials and examples.

Even without all the functionality and support of the major 3D authoring

tools for games and visual simulations, such as 3D Studio Max (Discreet) and

Maya (Alias/Wavefront’s), the features provided are sufficient for a small

development and powerful enough to be used for training simulations. The lack of

pre-built models can be overcome using the plug-ins. The learning curve is not

much different from similar programs and, in some cases, could be considered

even faster.

7. Audacity
Audacity47 is the program used to create or record the simulation sounds

(audio editor). There are plenty of audio editors available in both the OSS/FS and

proprietary world: the selection here is based on reviews and functionality.

Audacity is a very well reviewed open source program distributed under GPL. It is

50

available for Linux and other operating systems. It supports a variety of file formats

and has more than enough features for a medium sized project.

Even lacking some pre-recorded audio effects, the effects available are

good enough. The very simple user interface, not so common in open source

projects, is a plus in this tool. Like GIMP, there is no loss of quality or functionality

when using Audacity compared to proprietary options like Adobe Audition.

IV. ANALYSIS, CONCLUSIONS AND FUTURE WORK

A. ANALYSIS
The architecture proposed to develop a visual simulation using OSS/FS is

described in Figure 9 below:

Audacity

 Visual Simulation Application Blender3D

 GIMP
 Delta3D

Delta3D Utilities:

OpenScenegraph

ODE

Other
Dependencies

 Particle Editor
 Viewer
 Level Editor

 OpenGL OpenAL C++ Python

LINUX

PC Hardware

Figure 9. Architecture Proposed.

To develop a visual simulation to be used as a training tool, the basic

hardware presented is a COTS PC, with at least a 17” video display and stereo

sound. This configuration, even having limitations, is considered the minimum

needed to stimulate the auditory and visual senses of a trainee and achieve a

reasonable sense of immersion and training transfer.

The operational system is a well supported Linux distribution with hardware

drivers for OpenGL and the software drivers for OpenAL installed. The basic

51

52

programming languages are C++ and Python, normally available in any Linux

distribution, including development tools (compilers and editors).

OpenSceneGraph and ODE, and their dependencies, can be considered

the two main libraries used by the engine. On top of these libraries and other

dependencies libraries goes the engine. The application was developed using the

high level functions and classes of the engine and, only if necessary, accessing

the low level libraries to add advanced functionalities or enhance the visual

presentation.

The engine utilities (viewer, particle editor, etc.) and the other programs,

Blender, Audacity and GIMP, were used to edit and create content. These

programs have Linux, Windows and other OS versions, and if needed, they can be

used in other environments. In fact, content creation is a task that can be

externally developed and incorporated to the application later; all that is needed is

to be aware of the file formats supported.

The main problem with using a complete open source environment is

controlling version/updates in all tools used, including all the dependencies,

starting at the very bottom of the stack, the OS kernel. A good strategy is to freeze

updates when a smooth working architecture is reached. Before upgrading, it is

important to carefully analyze the improvements of a new version. This rule

applies for programs as well as libraries.

The time lost configuring an OSS/FS environment is much higher than in a

proprietary configuration and can be considered the “liberty” price paid, so every

upgrade has the potential to be much more time consuming than desired.

B. CONCLUSIONS
A visual development process using this OSS/FS architecture has the

potential to be less costly than a traditional windows development. The time frame

of the several development iterations could be higher in the beginning of the

process, but tends to reduce as the project and the tools used evolve. What

connects all the phases is the engine, which, being open source will always permit

53

enough freedom to execute changes and adaptations as needed. Again, the time

price must be seriously considered.

In some visual simulation application cases, like low COTS massive

training, this model seems to fit very well. It is clear that a PC cannot be used as a

substitute for all kinds of VE applications, but its use must be seriously considered,

especially when costs constrain the project. The limitations are introduced

basically by the hardware and not by the software or tools used.

Applications, like the one described in Appendix B, can be developed and

open sourced in such a way that well trained small development teams will also be

able to change, customize and redistribute as needed. Proprietary or classified

data can be put outside the application itself, in the form of pre-built 3D models or

XML data files.

One way to overcome the update and version problems is to distribute the

training application itself as a bootable CD containing the OS and precompiled

versions of all the drivers, dependencies and the engine. This approach can also

be applied to test training solutions before jumping into more expensive

alternatives.

C. FUTURE WORK
This study provides the basis for future visual simulations development

using open source tools. It supports the spread of some OSS/FS programs, like

the Delta 3D visual simulation engine, to develop low cost educational and military

training applications. Possible future research includes using the proposed tools

and framework in several developments to better evaluate these options, and

testing OSS/FS developed game-like applications in training. The analysis of the

scalability of the architecture is also a interesting point for future works.

To address the version compatibility issue and facilitate application

distribution in an almost windows exclusive world, the creation of a basic bootable

CD distribution (known as Linux LiveCD), including the libraries and programs

needed, is another possibility for future work that might be generated from this

thesis.

54

A strategy in that direction is the creation of some type of distributions such

as:

1. Development Version: Including OS kernel, GUI, video drivers,

content creation tools, compilers, editors, engine and CD-masters to create the

application distribution bootable version. This option may fit better in a hard drive

installed version than a bootable one, but with enough read-write media in the

form of a network share or USB device, the bootable version can also be used.

2. Application Distribution Version: This is a simplified version of the

previous one and does not even need a GUI. Only the kernel, pre-compiled

versions of the programs and network support as needed, so the training could be

performed with minimal interference to the other activities for which the trainee

machines are used.

These solutions could create a flexible and interesting way to distribute

training applications to run on a variety of PC hardware. The budget will be

concentrated in the application development and distribution processes and not in

licenses or hardware acquisition.

55

APPENDIX A. INSTALLING AND SETTING LINUX AND DELTA 3D

This tutorial describes the installation and settings for the LINUX distribution

FEDORA CORE 3 and DELTA 3D Gaming and Simulation Engine version 8.6 in

order to setup a visual simulation workstation. If a different LINUX distribution is

used, the settings could be similar, but more references are needed.

INSTALLING AND UPDATING LINUX FEDORA CORE 3
Before installing Linux, it is a good practice to look for specific references on

the web about the distribution and hardware being used.

Instructions to download FEDORA CORE 3 and prepare the installation

disks are available at http://fedora.redhat.com/download/. There are several

possibilities for disk partitions and physical installations that are not detailed here

because, at this time, the choice about how the system will work has been made:

dual boot, single system, one hard drive, two hard drives etc. Having made the

decisions, in Fedora, the Anaconda installation software takes care of the process.

The choice made during the installation process was “workstation installation”

(Figure 10) one time the system was to be used for software development. This

option automatically installs the compilers for C++ (GCC) and Python and other

editing tools.

The default desktop in Fedora is GNOME, but an interesting option is to use

KDE and its development tools, also installed. In this tutorial the screen shots are

all from KDE.

Figure 10. Fedora Core 3 Installation Type.

After the installation, it is necessary to update your system and download

more software. To do this automatically, a good option is to setup the yum program

(instructions are available at http://www.fedorafaq.org/#yumconf). According to the

references at http://ww.fedorafaq.org, the default servers from RedHat are slow

and changing to the yum settings is recommended. When everything is ready to

update the system, the graphical tool from the desktop (KDE or GNOME), or the

command line below can be used:

yum update

 (Note: Root privileges are needed to install and update system files and

programs. Linux good practice is to never login as root and only use root privileges

when needed. This can be done by creating a regular user and typing the

command su - to assume root identity when needed.)

56

57

TESTING AND INSTALLING OPENGL DRIVERS
After the installation, the video card hardware accelerated OpenGL drivers

must be checked by typing the following command:

glxinfo | grep direct

If the answer is “direct rendering: yes,” the OpenGL hardware accelerated

drivers are already installed. If not, it is necessary to install them manually.

Pre-compiled versions of the drivers for several Fedora kernels are

available at http://rpm.livna.org. To identify which kernel is being used, enter the

command below (the answer is the kernel number):

uname –r

References about the installation of the OpenGL drivers for the most

popular video cards are available at http://ww.fedorafaq.org.

 ATI: http://www.fedorafaq.org/#radeon

 NVIDIA: http://www.fedorafaq.org/#nvidia

The graphics cards vendors do not normally provide kernel specific RPM

versions and it is necessary to download and compile the source code for your

distribution. At http://rpm.livna.org, again, specific drivers for several Fedora

kernels are available. To automatically look for the kernel version, download and

install the drivers, the command below can be used:

ATI: yum install ati-fglrx kernel-module-fglrx-`(uname -r)`

NVIDIA: yum install nvidia-glx kernel-module-nvidia-`(uname -r)`

The drivers will become active after the next boot.

After every kernel update it is also necessary to update the drivers. To

update the drivers, the following commands can be used (this must be done

BEFORE restarting the system with the new kernel):

ATI:

yum install kernel-module-fglrx-`(rpm -q --queryformat="%{version}-%{release}\n" kernel | tail -n 1)`

NVIDIA:

yum install kernel-module-nvidia-`(rpm -q --queryformat="%{version}-%{release}\n" kernel | tail -n 1)`

Once the OpenGL drivers are “up and running” the next step is to install

Delta3D.

INSTALLING DELTA3D
From now on, the screen shots and mouse commands are from KDE’s

Konqueror file browser. Command lines will also be presented.

First, the Delta3D Linux distribution package must be downloaded

(http://www.delta3d.org/index.php?topic=downloads) into a “youruser” home folder

(/home/youruser):

Figure 11. Delta3D Package Downloaded.

58

Then the package must be extracted by right clicking the mouse and

selecting Extract, Extract Here:

Figure 12. Extract Delta3D Package.

Command line:

gunzip dt_fc3_0.8.6.tar.bz2

Under the folder /home/youruser a new folder named delta3d will be

created. This folder will contain the file structure presented in Figure 13.

 To get there:

cd delta3d

ls

59

Figure 13. Delta3D File Tree Structure.

(Note: This view can be selected using the tree view button on the

Konqueror Main Toolbar .)

This file structure corresponds to the following:

lib: Delta GCC 3.4.2 compiled libraries.
inc: folder with Delta3D Include header files.
data: Models and Files used in the examples.
doc: folder to generate the documentation using doxygen.
examples: Several example programs.
ext: External dependencies: (versions.txt show the versions used)
inc: external dependencies include header files.
lib: GCC 3.4.2 compiled external libraries.
src: Source code for Delta3D.
utilities: Some programs to help the development:

Graphical Particle Effect Editor
3D Model Viewer
BSP Compiler
HLA Graphical Stealth Viewer , and
env_var_setup.exe to windows environment variables installer

60

The file named SConstruct in the main folder, and several SConscript files

in folders below, are used to compile and link Delta3D libraries and examples

using the software construction tool SCONS (http://www.scons.org). These files

are Python scripts used as "configuration files" to build the software. The

installation of SCONS is described later. The other files are READMEs, Projects

and Solutions to be used with Windows Microsoft Visual Studio and settings for the

windows environment variables.

Before compiling Delta3D and running the examples, the environment

variables must be set. In Linux this could be done in several ways, one of which is

to edit the .bashrc file. This file is a hidden file inside the /home/youruser
directory. Below is the command to view:

ls -a

or select View, Show Hidden Files in the file browser.

Figure 14. Show Hidden Files.

61

Below is the command to edit:

 gedit .bashrc &

or double click in the .bashrc file to open the gedit text editor.

The file will probably be similar to this:

Figure 15. Old .bashrc File.

The following lines must be added to the end of the file:

DELTA_ROOT=$HOME/delta3d
 DELTA_DATA=$DELTA_ROOT/data
 DELTA_INC=$DELTA_ROOT/inc:$DELTA_ROOT/ext/inc
 DELTA_LIB=$DELTA_ROOT/lib:$DELTA_ROOT/ext/lib
 LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$DELTA_LIB
 export DELTA_ROOT
 export DELTA_DATA
 export DELTA_INC
 export DELTA_LIB
 export LD_LIBRARY_PATH

62

The file will be similar to:

Figure 16. New .bashrc File.

After saving the file all command windows must be closed.

To check if the variables are correctly set, a new command window can be

opened and the command env typed, checking if the following lines are listed:

DELTA_INC=/home/youruser/delta3d/inc:/home/youruser/delta3d/ext/inc

DELTA_ROOT=/home/youruser/delta3d

DELTA_DATA=/home/youruser/delta3d/data

DELTA_LIB=/home/youruser/delta3d/lib:/home/youruser/delta3d/ext/lib

LD_LIBRARY_PATH=:/home/youruser/delta3d/lib:/home/youruser/delta3d/ext/lib

63

INSTALLING SCONS
SCONS (http://www.scons.org) is the tool used to compile and build

Delta3D files and projects. The SConstruct and SConscript files presented in

Delta3D source code subdirectories are high-level Python scripts that tell SCONS

how to build Delta3D.

On the tool website, there is an RPM distribution package available that can

be downloaded to /home/youruser. To install, it is necessary to assume the root

id opening a terminal window (in KDE pressing F4 with the window selected),

command:

 su -

After that, the command rpm with some flags to extract and install the files:

 rpm –ivh scons-0.96.1-1.noarch.rpm

(The scons rpm version used as an example was scons-0.96.1-1.noarch.rpm.)

 The SConstruct and SConscript files will do all the compiling and linking

work. For Delta3D libraries and examples these files are already created, but for

other external projects they need to be created. A template version is presented in

the section “Linux Hello World.”

BUILDING DELTA UTILITIES AND EXAMPLES
The process to build Delta3D libraries and put them in the right place is

described below.

To compile, in the delta3d root directory (/home/youruser/delta3d) just

type:

 scons

64

To install the shared libraries in the lib folder it is necessary to specify a

prefix like that:

 scons install prefix=/home/youruser/delta3d

The installation can be confirmed by checking the delta3d lib

(/home/youruser/delta3d/lib) folder and looking for the files created.

The Konqueror window will look like this:

Figure 17. Extract Delta3D Lib Files.

Now the examples and utilities can be built by typing:

scons examples

scons utilities

There is a lot of documentation about the scons tool on the scons web site

(http://www.scons.org). Another option is to ask scons for help:

scons -h

65

Some of the options included are:

• Q - Quiet output

• j N - Number of jobs to use, help for multiple processors

• c - Clean out the previous build

• prefix=path - Path to in which to install Delta3D

• mode=debug|release - 'debug' builds with debugging symbols,
'release' builds with optimizations enabled

• noWarnings - Turns off all compiler warnings

If your RTI and Python are already installed, the HLA and Python libraries

will be automatically compiled in the first scons command. But they can also be

built later. To build HLA-related libraries, examples, and utilities:

scons hle

To build the Python bindings and example:

scons python

To test the examples there are two options:

1) Navigating to the examples folder and double clicking in the KDE

executable file icon:

2) Opening a terminal window and in the program folder (F4) and typing:

./programName

66

Below are some screen shots of two examples running on LINUX:

Figure 18. TestCharacter Screenshot.

Figure 19. TestEffects Screenshot.

67

To run the utilities the same thing can be done. This screenshot is from the

Viewer running on Linux with a model loaded:

Figure 20. Viewer Screenshot.

ADDING DESKTOP LINKS AND ICONS
To make the Linux workstation easier to use it is interesting to use some

desktop links and icons to facilitate access to the programs and folders, as

illustrated in the figure below:

Figure 21. Desktop Icons Screenshot.

68

To link to the folders Delta Docs and Delta3D, right click the mouse

anywhere on the desktop and select Create New, File, Link to Location and in

File name, navigate to the Delta3d folder and hit OK.

To change the icon, right click in the icon created and double click in the

folder icon. To select the Delta3D icons, chose other icons and browse to the

folder where the delta icons were downloaded.

To create the docs folder the process is the same, but select HTML File

(instead of Link to Location).

To create the links to the Viewer and Particle Editor programs the sequence

is the same again, but after selecting File, select Link to Application (instead of

selecting Link to Location).

Figure 22. Create New File Desktop.

LINUX HELLO WORLD
Below is the C++ code for a simple Hello World program. It is portable to

any other OS supported by Delta3D. This first code is from the Project1.h header

file:

69

70

#include "dtCore/dt.h"
#include "dtABC/dtabc.h"

using namespace dtCore;
using namespace dtABC;
using namespace std;

class Project1 : public Application
{
 public:
 //Constructor
 Project1(string configFilename):Application(configFilename){

 //setup the data file search paths for the config file
 //and the models files
 SetDataFilePathList("../;../data");

 //Generating the default config file
 //Setting the path
 string path = osgDB::findDataFile(configFilename);
 //verifying if the config file already exists, if not generate
 if (path.empty()) {
 GenerateDefaultConfigFile();
 }

 // Loading a 3D model
 // Instantiate the object related to the model
 Object *obj = new Object("Text");
 // Load the model file, in this case a OpenFligth model (.flt)
 obj->LoadFile("HelloWorld.flt");
 // Adding the object to the scene as a Drawable object
 GetScene()->AddDrawable(obj);

 // Adjusting the Camera position
 // Instantiating a transform object to
 // store the camera position and attitude
 Transform camPos;

 //coordinates are x y z
 camPos.SetLookAt(0.f, -100.f, 20.f, //position
 0.f, 0.f, 0.f, //look At
 0.f, 0.f, 1.f); //up Vector
 GetCamera()->SetTransform(&camPos);

 // Setting a motion model for the camera
 OrbitMotionModel *omm = new OrbitMotionModel(GetKeyboard(),GetMouse());
 // Setting the camera as a target for the motion model.
 // The object (the hello world 3D text)
 // will be static at 0,0,0 and the camera
 // will move using the right clicked mouse.
 omm->SetTarget(GetCamera());
 };

 //Default destructor
~Project1(){ };

};

71

This second code is from the Project1.cpp file:
#include "Project1.h"

main()
{
 //instantiate the application and look for the config file
 Project1 *app = new Project1("config.xml");
 // putting a title to explain how end the application
 app->GetWindow()->SetWindowTitle("Hit escape to exit");
 // configuring the application
 app->Config();
 // running the simulation loop
 app->Run();
 return 0;

}

To compile the program using Linux, it is necessary to create an

SConstruct file like the one presented below:
import os
import SCons.Util

env = Environment()

append the outside env to ours
for K in os.environ.keys():
 if K in env['ENV'].keys() and K in ['DELTA_ROOT','DELTA_INC', 'DELTA_LIB'
]:
 env['ENV'][K] = SCons.Util.AppendPath(env['ENV'][K], os.environ[K])
 else:
 env['ENV'][K] = os.environ[K]

set compiler options
env.Append(CPPPATH = ['/usr/X11R6/include'] +
env['ENV']['DELTA_INC'].split(os.pathsep))
env.Append(CXXDEFINES = []) # for debug mode, add 'DEBUG' and '_DEBUG'
env.Append(CXXFLAGS = ['-O2','-pipe', '-Wall']) # for debug mode, add '-
g' and replace '-O2' with 'O0'
env.Append(LIBPATH = ['/usr/X11R6/lib'] +
env['ENV']['DELTA_LIB'].split(os.pathsep))

source files
project1Srcs = ['Project1.cpp']

list your lib dependencies here
project1Deps = ['OpenThreads', 'osg', 'osgDB', 'osgGL2', 'osgFX',
'osgParticle', 'osgTerrain', 'osgText', 'osgUtil', 'plibsg', 'plibul',
'plibjs', 'Producer', 'gdal', 'fltk', 'Xxf86vm', 'dtcore', 'dtabc', 'dtutil'
]

build it!
env.Program('Project1', project1Srcs, LIBS = project1Deps)

This file can be used as a template for other projects - all that is needed is

to change the source file and the dependencies lists for the new project options.

To compile it, type this command in a project folder terminal window:

 scons

To run, double click in the executable icon or use the command line option

in a terminal window:

./HelloWorld

Here is a screenshot of the HelloWorld program running on Linux:

Figure 23. HelloWorld Screenshot.

72

73

APPENDIX A REFERENCES (last accessed July 2005)

www.fedorafaq.org

rpm.livna.org

www.fedora.redhat.com

www.scons.org

www.delta3d.org

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

APPENDIX B. APPLICATION DEVELOPED USING OSS/FS TOOLS

INTRODUCTION
This application was developed to test the many tools and the process

proposed in this thesis. It is an example of a PC Naval Visualization Application

developed using exclusively open source software. The scenario presented is an

Anti-Submarine exercise but it could be easily expanded, with small modifications,

to other naval scenarios.

There are references to the source code from three programs from the

Delta3D 0.7.0 Open Source Engine Public Beta Test CD distributed during the

I/ITSEC 2004. It was developed in C++ and XML using primarily the high level

classes from the Delta3D engine.

LICENSE SCHEMA PROPOSED
Following the license schema ideas from the Delta3D Engine, the license

schema proposed for this application or any other similar application is to use

flexible licenses in the libraries and models and any compatible license in the

application.

The engine and libraries can be distributed under flexible open source

licenses like LGPL, MIT/X or BSD. The authoring tools under any other license,

but generating data under open file formats. The Application developed, the

models and data under any different compatible license, even proprietary licenses

if allowed.

REFERENCES
The models used are from the references below:

• DDG - Delta3D Asset Library

• Submarine - 3D Café

• Frigate - GCB Open Source Strategic Game

76

Code references:

 From the Delta3D 0.7.0 Public Beta Test CD distributed in the 2004

I/ITSEC:

• Plane Guard

• Driver

• Firefigther

TOOLS, ENGINE AND ENVIRONMENT
During the development process the following open source authoring tools

where used:

• For 3D Modeling and Editing - Blender3D

• Textures Creation and Editing - GIMP

• For Audio Recording and Editing - Audacity

The operational system installed in the PC hardware was Linux Fedora

Core 3 under the kernel 2.6.12-1.1372_FC3 and the C++ compiler was GCC

3.4.0.

To edit the source code, the EMACS text editor was customized and the

SCONS tool was used to automate the process.

The Delta3D Visual Simulation Engine version used was the 8.6 with the

OpenSceneGraph library dependency in version 0.9.8. From the engine utilities,

the Viewer was used to view the models before selection and file format

conversion when needed. The real time Particle System Editor was also used to

edit the particle systems to generate the spray and wake of the ships.

HIGH LEVEL CLASS HIERARCHY
This is a high level UML static diagram of the class hierarchy and its relation

to the Delta3D classes. The dtCore and dtABC classes are from the Delta3D

engine and the pcnaviz classes are the ones developed in the application.

Figure 24. Application Class Hierarchy.

77

SCREENSHOTS

Figure 25. The DDG Model.

Figure 26. DDG Turn and the Submarine in the Surface.

78

Figure 27. Underwater Camera with a Frigate View.

79

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

LIST OF REFERENCES

1. Moore, Gordon E., “Cramming More Components Onto Integrated Circuits,”
Electronics, Vol. 38, No. 8, April 19, 1965.

2. “Defense Modeling and Simulation Office,” U.S. Department of Defense,

Modeling and Simulation Office, (M&S) Glossary DoD 5000.59-M,
http://www.dmso.mil/, (last accessed on September 8, 2004).

3. Caird, J. K., “Persistent Issues in the Application of Virtual Environment

Systems to Training,” Department of Psychology, University of Calgary
(1996).

4. Furness, T. A and Barfield, W., Virtual Environment and Advanced Interface

Design, Chapter 1, Oxford University Press, New York, 1995.

5. Slater, M., “Measuring Presence: A Response to the Witmer and Singer

Presence Questionnaire,” Presence: Teleoperators and Virtual Environments,
8(5), pp. 560-56, 1999.

6. Heilig, M.L., “El Cine del Futuro: The Cinema of the Future,” Presence:

Teleoperators and Virtual Environments, 1 (3), pp. 279-294, 1992.

7. Psotka, J., Lewis, S.A., and King, D., “Effects of Field of View on Judgments

of Self-Location: Distortions in Distance Estimations Even When the Image
Geometry Exactly fits the Field of View,” Presence, Vol. 7, No. 4, 1998.

8. Handbook of Virtual Environment Technology, by Lawrence Erlbaum

Associates, Inc. (ed: 2002), Chapter 4 Virtual Auditory Displays by Shilling
and Shinn-Cunningham.

9. Miner, N. and Caudell, T., “Computational Requirements and Synchronization

Issues for Virtual Acoustic Displays,” Presence, Vol. 7, pp. 396-409, 1998.

10. Prensky, Marc, Digital Game-Based Learning, McGraw-Hill, 2001.

11. “Modeling and Simulation – Linking Entertainment and Defense,” Computer

Science and Telecommunications Board, National Research Council,
National Academy Press, Washington D.C., 1997.

12. DARWARS Project, www.darwars.com, (last accessed April 28, 2005).

13. Macedonia, Michael, “Games Simulation and the Military Education

Dilemma,” EDUCAUSE Information Resources Library, 2001,
http://www.educause.edu/ir/library/pdf/ffpiu018.pdf.

82

14. Rose, Frank, “The Lost Boys,” Wired Magazine, 12-08, August 2004.

15. Prensky, Marc, “Has Growing Up Digital and Extensive Video Game Playing

Affected Younger Military Personnel’s Skill Sets?” I/ITSEC Conference, 2003,
http://www.marcprensky.com/writing/.

16. Silberman, Steve, “The War Room,” Wired Magazine, 12-09, September

2004.

17. Zyda, M., Mayberry, A., McCree, J., Davis. M., “From Viz-Sim to VR to

Games: How We Built a Hit Game-based Simulation,” Organizational
Simulation: From Modeling & Simulation to Games & Entertainment, W.B.
Rouse and K.R. Boff (Eds.), New York: Wiley, 2005.

18. Erwin, Sandra I., “$65K Flight Simulator Draws Skepticism from Military

Buyers,” National Defense Magazine, November 2000, [cited 2004 August
18], http://www.nationaldefensemagazine.org.

19. Maguire, F., Van Lent, M., Prensky, M., Tarr, R., “Defense Combat Sim

Olympics – Methodologies Incorporating the ‘Cyber Gaming Culture’,”
I/ITSEC 2002, http://www.marcprensky.com/writing/.

20. Prensky, M., “Why Not Simulation?”

http://www.marcprensky.com/writing/default.asp, (last accessed September 8,
2004).

21. Handbook of Virtual Environment Technology, by Lawrence Erlbaum

Associates, Inc. (ed:2002), Chapter 26 Technology Management and User
Acceptance of Virtual Environment Technology by David Gross

22. Parent, Rick, Computer Animation, Algorithms and Techniques, San

Francisco, CA: Morgan Kaufman Publishers, 2002.

23. St. Laurent, Andrew M., Understanding Open Source and Free Software

Licensing, Sebastopol, CA: O'Reilly, 2004.

24. Open Source Definition, Open Source Initiative Web Site,

http://www.opensource.org, (last accessed July 2005).

25. GPL License Definition, Free Software Foundation Web Site,

http://www.fsf.org, (last accessed July 2005).

26. GNU Project Web Site, http://www.gnu.org/licenses/license-list.html, (last

accessed July 2005).

83

27. Mozilla Project Web Site, http://www.mozilla.org/MPL, (last accessed July
2005).

28. Trolltech Web Site, http://www.trolltech.com/products/qt/opensource.html, (last

accessed July 2005).

29. Article published at http://www.serverwatch.com/news/article.php/3497586, (last

accessed July 2005).

30. Wheeler, David A., “How to Evaluate Open Source Software/Free Software

Programs,” http://www.dwheeler.com/oss_fs_eval.html, (last accessed July
2005).

31. “A Guide to Open Source Software for Australian Government Agencies,”

http://www.agimo.gov.au/infrastructure/oss, April 2005, (last accessed July
2005).

32. Presentation from Dr. Rudolph Darken of the Naval Postgraduate School

MOVES Institute Open House, August 2004.

33. Brooks, Frederick P., “The Mythical Man-Month: Essays on Software

Engineering,” Addison-Wesley.

34. ATI and NVIDIA websites, http://ww.ati.com and http://ww.nvidia.com, (last

accessed July 2005).

35. Sourceforge and Freshmeat websites, http://sourceforge.net and

http://freshmeat.net, (last accessed July 2005).

36. Google help website, http://www.google.com/help/features.html#link, (last

accessed July 2005).

37. KDE and GNOME websites,

http://developer.kde.org/documentation/standards/kde/kde-style.html and
http://developer.gnome.org/projects/gup/hig/2.0/, (last accessed July 2005).

38. The Mitre Corporation, “Use of Free and Open-Source Software (FOSS) in

the U.S. Department of Defense, Version 1.2.04, January 2, 2003,”
(http://www.mitre.org/work/sepo/library/SoftwareEngineering/OpenSourceSoft
ware/dodfoss.pdf, (last accessed July 2005).

39. OpenGL website, http://www.opengl.org, (last accessed July 2005).

40. SGI website, http://www.sgi.com, (last accessed July 2005).

41. OpenAL website, http://www.openal.org, (last accessed July 2005).

84

42. Delta3D Visual Simulation Engine website, http://www.delta3d.org, (last
accessed July 2005).

43. OpenSceneGraph website, http://www.openscenegraph.org, (last accessed

July 2005).

44. Open Dynamics website, http://ode.org, (last accessed July 2005).

45. GNU Image Manipulation Program website, http://www.gimp.org/, (last

accessed July 2005).

46. Blender 3D Website, http://www.blender3d.com, (last accessed July 2005).

47. Audacity website, http://audacity.sourceforge.net, (last accessed July 2005).

48. Ogre3D website, http://www.ogre3d.org, (last accessed August 2005).

49. Panda 3D website, http://www.panda3d.org, (last accessed August 2005).

85

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

